0%

(MICCAI 2018) SLSDeep:Skin Lesion Segmentation Based on Dilated Residual and Pyramid Pooling Networks

Sarker M M K, Rashwan H A, Akram F, et al. Slsdeep: Skin lesion segmentation based on dilated residual and pyramid pooling networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018: 21-29.



1. Overview




In this paper, it proposed SLSDeep

  • encoder. dilated residual layer (DRN)
  • decoder. pyramid pooling
  • Negative Log Likelihood (NLL) + End Point Error (EPE)



2. Methods




  • layer1~layer4. four pretrained DRN

2.1. Loss Function



α=0.5
  • NLL


  • EPE


    u0, u1. first derivatives of u in x and y direction



3. Experiments


3.1. Dataset

  • ISBI 2016. 900 train, 379 test; size range [542x718~2848x4288]
  • ISBI 2017. 2000 train, 150 valid, 600 test

3.2. Metrics

  • Specificity
  • Sensitivity
  • Jaccard Index
  • Dice coefficient
  • Accuracy

3.3. Details

  • LR. decoder 0.01, encoder 0.001
  • poly learning rate policy. 0.9
  • batchsize. 16
  • epoch. 100
  • TITANX 12G, 20 hours

3.3.1. Data Augmentation

  • random scale. 0.5~1.5
  • random rotation. -10~10
  • resize to 384x384 for training

3.4. Comparison